Advancements in Artificial Intelligence Innovations for Alzheimer's Disease Diagnosis
Main Article Content
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder with a rising prevalence among older patients, including in Thailand. Diagnosis typically centers on assessing the patient's overall clinical presentation. However, this approach has limitations, as it does not allow for direct examination of brain tissue, which would require surgical intervention. This leads to delays in diagnosing the disease during its early stages, when symptoms have not yet appeared, but toxic proteins have already begun to accumulate. Developing new diagnostic techniques for Alzheimer’s disease is crucial, especially in an aging society. As a result, there is growing interest in developing new techniques for disease diagnosis. Advances in artificial intelligence technology have started to play a significant role in diagnosing and treating various diseases. Consequently, it may offer a promising new option for diagnosing Alzheimer's disease. This article therefore aims to review current knowledge on the role of artificial intelligence in diagnosing Alzheimer's disease. The data was based on a Google Scholar search from 2019 to 2024, which found 16 academic articles and 7 original research stories. Artificial intelligence (AI) has the ability to analyze various forms of medical data holistically, including radiology images. AI utilizes machine learning and deep learning algorithms to analyze data, identifying abnormalities within datasets used for testing. AI can efficiently analyze large datasets in a short time while maintaining high accuracy. However, the development of artificial intelligence for diagnosing Alzheimer's disease is still undergoing research and development aimed at improving diagnostic accuracy.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
ประกาศเกี่ยวกับลิขสิทธิ์
บทความที่ลงพิมพ์ในวารสารสถาบันราชประชาสมาสัย ถือว่าเป็นผลงานทางวิชาการหรือการวิจัย และวิเคราะห์ตลอดจนเป็นความเห็นส่วนตัวของผู้นิพนธ์ ไม่ใช่ความเห็นของกรมควบคุมโรค ประเทศไทย หรือกองบรรณาธิการแต่ประการใด ผู้นิพนธ์จำต้องรับผิดชอบต่อบทความของตน
นโยบายส่วนบุคคล
ชื่อและที่อยู่อีเมลที่ระบุในวารสารสถาบันราชประชาสมาสัย จะถูกใช้เพื่อวัตถุประสงค์ตามที่ระบุไว้ ในวารสารเท่านั้น และจะไม่ถูกนำไปใช้สำหรับวัตถุประสงค์อื่น หรือต่อบุคคลอื่นใด
References
World Health Organization. Dementia [Internet]. Geneva. World Health Organization; 2017 [cited 2024 Jul 7]. Available from: https://www.who.int/health-topics/dementia
Ministry of Public Health (TH), Office of the Permanent Secretary. Number and percentage of dementia patients [Internet]. Nonthaburi. Ministry of Public Health; 2024. [cited 2024 Jul7]. Available from: https://hdcservice.moph.go.th/hdc/reports/report.php?source=pformated/format2.php&cat_id=ea11bc4bbf333b78e6f53a26f7ab6c89&id=b1f666a9b74e77f2002c0163646e7447 (in Thai)
Khan S, Barve KH, Kumar MS. Recent advancements in pathogenesis, diagnostics and treatment of Alzheimer’s disease. Current neuropharmacology. 2020;18(11):1106-25.
Passeri E, Elkhoury K, Morsink M, Broersen K, Linder M, Tamayol A, et al. Alzheimer’s disease: treatment strategies and their limitations. International Journal of Molecular Sciences. 2022;23(22):13954.
Bazarbekov I, Razaque A, Ipalakova M, Yoo J, Assipova Z, Almisreb A. A review of artificial intelligence methods for Alzheimer’s disease diagnosis: Insights from neuroimaging to sensor data analysis. Biomedical Signal Processing and Control. 2024;92:106023.
Zhang W, Li Y, Ren W, Liu B. Artificial intelligence technology in Alzheimer’s disease research. Intractable & Rare Diseases Research. 2023;12(4):208-12.
Griffiths J, Thaikruea L, Wongpakaran N, Munkhetvit P. Prevalence of mild cognitive impairment in rural Thai older people, associated risk factors and their cognitive characteristics. Dementia and Geriatric Cognitive Disorders Extra. 2020;10(1):38-45.
Cipriani G, Dolciotti C, Picchi L, Bonuccelli U. Alzheimer and his disease: a brief history. Neurological Sciences. 2011;32(2):275-9.
Aisen PS, Cummings J, Jack CR Jr, Morris JC, Sperling R, Frölich L, et al. On the path to 2025: understanding the Alzheimer’s disease continuum. Alzheimer's Research & Therapy. 2017;9(1):60.
Prasanna P, Rathee S, Rahul V, Mandal D, Goud MSC, Yadav P, et al. Microfluidic platforms to unravel mysteries of Alzheimer’s disease: How far have we come?. Life. 2021;11(10):1022.
Rostagno AA. Pathogenesis of Alzheimer’s disease. International Journal of Molecular Sciences. 2022;24(1):107.
Dong Y, Li X, Cheng J, Hou L. Drug development for Alzheimer’s disease: microglia induced neuroinflammation as a target?. International Journal of Molecular Sciences. 2019;20(3):558.
Graff-Radford J, Yong KXX, Apostolova LG, Bouwman FH, Carrillo M, Dickerson BC, et al. New insights into atypical Alzheimer’s disease in the era of biomarkers. The Lancet Neurology. 2021;20(3):222-34.
Kulkantrakorn K. The evaluation and diagnosis of dementia and Alzheimer’s disease: The update. Thammasat Medical Journal. 2014;14:93-101. (in Thai)
Arslan B, Zetterberg H, Ashton NJ. Blood-based biomarkers in Alzheimer’s disease - moving towards a new era of diagnostics. Clinical Chemistry and Laboratory Medicine. 2024;62(6):1063-9.
Moreira FTC, Correia BP, Sousa MP, Sales GF. Colorimetric cellulose-based test-strip for rapid detection of amyloid β-42. Microchimica Acta. 2021;188(10): 334. doi. 10.1007/s00604-021-04996-7.
Huang LK, Kuan YC, Lin HW, Hu CJ. Clinical trials of new drugs for Alzheimer disease: a 2020-2023 update. Journal of Biomedical Science. 2023;30(1):83.
Janiesch C, Zschech P, Heinrich K. Machine learning and deep learning. Electron Markets. 2021;31(3):685-95.
Viswan V, Shaffi N, Mahmud M, Subramanian K, Hajamohideen F. Explainable artificial intelligence in Alzheimer’s disease classification: a systematic review. Cognitive Computation. 2024;16(1):1-44.
Elgandelwar SM, Bairagi V, Vasekar SS, Nanthaamornphong A, Tupe-Waghmare P. Analyzing electroencephalograph signals for early Alzheimer’s disease detection: deep learning vs. traditional machine learning approaches. International Journal of Electrical and Computer Engineering. 2024;14(3):2602-15.
Wang R, He Q, Shi L, Che Y, Xu H, Song C. Automatic detection of Alzheimer’s disease from EEG signals using an improved AFS-GA hybrid algorithm. Cognitive Neurodynamics. 2024;1-21.
Li B, Liu J, Zhang T, Cao Y, Cao J. Quantitative analysis and machine learning-based interpretation of EEG signals in coma and brain-death diagnosis. Cognitive Neurodynamics. 2024;1-16.
Al-Rawashdeh HS, Usman A, Dutta AK, Sait ARW. Hybrid feature extraction technique-based Alzheimer’s disease detection model using MRI images. Journal of Disability Research. 2024;3(6):20240073.
Al-Zharani M, Ansarullah SI, Al-Eissa MS, Dar GM, Alqahtani RA, Alkahtani S. Exploring the efficacy of deep learning techniques in detecting and diagnosing Alzheimer’s disease: A comparative study. Journal of Disability Research. 2024;3(6):20240064.
Bendella Z, Purrer V, Haase R, Zülow S, Kindler C, Borger V, et al. Brain and ventricle volume alterations in idiopathic normal pressure hydrocephalus determined by artificial intelligence-based MRI volumetry. Diagnostics. 2024;14(13):1422.
Hasan MM, Rahman S, Parmar H, Chowdhury SK. A novel artificial intelligence (AI) method to classify and predict the progression of Alzheimersdisease. bioRxiv. 2024; doi. 10.1101/2024.06.03.597177
Shahbaz M, Ali S, Guergachi A, Niazi A, Umer A. Classification of Alzheimer’s disease using machine learning techniques. Technology and Applications (Data). 2019;296-303.
Pamarapa C, Ekjeen T, Shoombuatong W, Vichianin Y. Alzheimer’s disease classification and prediction using T1-weighted MR brain imaging based on SVM algorithm. The Thai Journal of Radiological Technology. 2021;46(1):69-79. (in Thai)
Thamthum S, Sitjongsataporn S. Study of brain MRI image classification by convolutional neural network. Engineering Transactions: A Research Publication of Mahanakorn University of Technology. 2024;27(1):10-18. (in Thai)
Photsathian T, Suttikul T, Tangsrirat W. Alzheimer’s disease classification from MRI using deep learning. Journal of Engineering and Digital Technology. 2023;11(1):8-15. (in Thai)
Vandenberk B, Chew DS, Prasana D, Gupta S, Exner DV. Successes and challenges of artificial intelligence in cardiology. Frontiers in Digital Health. 2023;5: 5:1201392. doi. 10.3389/fdgth.2023.1201392.
Krittanawong C, Zhang H, Wang Z, Aydar M, Kitai T. Artificial intelligence in precision cardiovascular medicine. Journal of the American College of Cardiology. 2017;69(21):2657-64.