Artificial Intelligence in the design and fabrication of tissue engineering scaffolds
Main Article Content
Abstract
Tissue engineering has emerged as a transformative field in regenerative medicine, with scaffold design playing a critical role in supporting cell growth and tissue regeneration. However, replicating a complex architecture and mechanical properties of native tissues remains a significant challenge. Recent advancements in artificial intelligence (AI) have revolutionized scaffold development by enhancing a design and fabrication processes to achieve specific functional properties. AI-driven approaches enable the prediction of biomaterial properties, optimization of scaffold geometries, and real-time control of fabrication processes, significantly reducing the reliance on trial-and-error experimentation. AI-integrated additive manufacturing has demonstrated superior accuracy in producing patient-specific, mechanically robust, and biologically compatible scaffolds. Moreover, AI models facilitate precise prediction of scaffold mechanical behavior and degradation profiles, accelerating the development of clinically viable tissue engineering solutions. This review highlights the integration of AI across various stages of scaffold development and discusses its potential to overcome existing limitations, paving the way for more personalized, effective, and scalable regenerative therapies.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
ประกาศเกี่ยวกับลิขสิทธิ์
บทความที่ลงพิมพ์ในวารสารสถาบันราชประชาสมาสัย ถือว่าเป็นผลงานทางวิชาการหรือการวิจัย และวิเคราะห์ตลอดจนเป็นความเห็นส่วนตัวของผู้นิพนธ์ ไม่ใช่ความเห็นของกรมควบคุมโรค ประเทศไทย หรือกองบรรณาธิการแต่ประการใด ผู้นิพนธ์จำต้องรับผิดชอบต่อบทความของตน
นโยบายส่วนบุคคล
ชื่อและที่อยู่อีเมลที่ระบุในวารสารสถาบันราชประชาสมาสัย จะถูกใช้เพื่อวัตถุประสงค์ตามที่ระบุไว้ ในวารสารเท่านั้น และจะไม่ถูกนำไปใช้สำหรับวัตถุประสงค์อื่น หรือต่อบุคคลอื่นใด
References
Ibrahimi S, D’Andrea L, Gastaldi D, Rivolta MW, Vena P. Machine Learning approaches for the design of biomechanically compatible bone tissue engineering scaffolds. Computer Methods in Applied Mechanics and Engineering [Internet]. 2024 [cited 2025 Jun 12];423:116842. Available from: https://www.sciencedirect.com/science/article/pii/S0045782524000987
Zheng X, Chen TT, Jiang X, Naito M, Watanabe I. Deep-learning-based inverse design of three-dimensional architected cellular materials with the target porosity and stiffness using voxelized Voronoi lattices. Science and technology of advanced materials [Internet]. 2023 [cited 2025 Jun 12];24(1):1-15. Available from: https://www.tandfonline.com/doi /full/10.1080/14686996.2022.2157682
Bai J, Li M, Shen J. Prediction of Mechanical Properties of Lattice Structures: An Application of Artificial Neural Networks Algorithms. Materials [Internet]. 2024 [cited 2025 Jun 12];17(17):4222. Available from: https://www.mdpi.com/1996-1944/17/17/4222
Limon SM, Quigley C, Sarah R, Habib A. Advancing scaffold porosity through a machine learning framework in extrusion based 3D bioprinting. Frontiers in Materials [Internet]. 2024 [cited 2025 Jun 12];10:1-13. Available from: https://www. frontiersin.org/ journals/materials/articles/10.3389/fmats.2023.1337485/full
Chen B, Dong J, Ruelas M, Ye X, He J, Yao R, et al. Artificial Intelligence-Assisted High-Throughput Screening of Printing Conditions of Hydrogel Architectures for Accelerated Diabetic Wound Healing. Advanced Functional Materials [Internet]. 2022 [cited 2025 Jun 12] ;32(38):2201843. Available from: https://advanced.onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202201843
Ning H, Zhou T, Joo SW. Machine learning boosts three-dimensional bioprinting. International Journal of bioprinting [Internet]. 2023 [cited 2025 Jun 12];9(4):739. Available from: https: //pmc.ncbi.nlm.nih.gov/articles/PMC10261168/
Gharibshahian M, Torkashvand M, Bavisi M, Aldaghi N, Alizadeh A. Recent advances in artificial intelligent strategies for tissue engineering and regenerative medicine. Skin Research and Technology [Internet]. 2024 [cited 2025 Jun 12];30(9):e70016. Available from: https:// pubmed.ncbi.nlm.nih.gov/39189880/
Mohammadnabi S, Moslemy N, Taghvaei H, Zia AW, Askarinejad S, Shalchy F. Role of Artificial Intelligence in data-centric Additive Manufacturing Processes for Biomedical Applications. Journal of the Mechanical Behavior of Biomedical Materials [Internet]. 2025 [cited 2025 Jun 12];166:106949-9. Available from: https://pubmed.ncbi.nlm.nih.gov/40036906/
O’Brien FJ. Biomaterials & scaffolds for tissue engineering. Materials Today [Internet]. 2011 [cited 2025 Jun 12];14(3):88–95. Available from: https://www.sciencedirect.com/science/ article/pii/S136970211170058X
Bermejillo Barrera MD, Franco-Martínez F, Díaz Lantada A. Artificial Intelligence Aided Design of Tissue Engineering Scaffolds Employing Virtual Tomography and 3D Convolutional Neural Networks. Materials [Internet]. 2021 [cited 2025 Jun 12];14(18):5278. Available from: https://www.mdpi.com/1996-1944/14/18/5278
Omigbodun FT, Osa-Uwagboe N, Udu AG, Oladapo BI. Leveraging Machine Learning for Optimized Mechanical Properties and 3D Printing of PLA/cHAP for Bone Implant. Biomimetics [Internet]. 2024 [cited 2025 Jun 12];9(10):587. Available from: https://www.mdpi.com/2313-7673/9/10/587