Advanced imaging in gout (Thai)
Main Article Content
Abstract
โรคเกาต์ (gout) เป็นโรคข้ออักเสบที่เกิดจากการสะสมผลึกเกลือโมโนโซเดียมยูเรต (monosodium urate) ในน้ำไขข้อและเนื้อเยื่อจากการมีระดับกรดยูริกในซีรัมสูง (hyperuricemia) เป็นระยะเวลานาน การ ตรวจวินิจฉัยโรคเกาต์ทำได้โดยการตรวจพบผลึกเกลือโมโนโซเดียมยูเรตในน้ำไขข้อของผู้ป่วยที่มีข้ออักเสบ หรือพบก้อนโทฟัส (tophus)1, 2 แต่ในบางกรณีเช่น ข้อขนาดเล็ก ตำแหน่งข้อลึก หรือไม่สามารถเจาะน้ำไขข้อมาตรวจได้ ส่งผลให้ไม่ได้รับการวินิจฉัยอย่างเฉพาะเจาะจงหรือเกิดความล่าช้า จึงมีการพัฒนาภาพถ่ายรังสีเพื่อใช้สำหรับช่วยการวินิจฉัย ในปัจจุบันเทคนิคภาพถ่ายรังสีในการวินิจฉัยโรคเกาต์ มีหลายเทคนิค ได้แก่ ภาพรังสีพื้นฐาน (plain radiography), อัลตราซาวนด์ (ultrasonography), เอกซเรย์คอมพิวเตอร์ความเร็วสูงสองพลังงาน (Dual energy computed tomography; DECT), เครื่องสร้างภาพด้วยสนามแม่เหล็กไฟฟ้า (Magnetic Resonance Imaging; MRI), เวชศาสตร์นิวเคลียร์ (Nuclear Medicine) เทคนิคแต่ละชนิดช่วยในการวินิจฉัยและมีข้อจำกัดที่แตกต่างกัน ดังกล่าวต่อไป
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
(ใส่ข้อความเดียวกันกับ ก๊อปปี้ไลน์ก็ได้)ดูตัวอย่างได้ที่หน้าบทความ---บทความนี้ตีพิมพ์เป็นลิขสิทธื์ของใคร...
References
Hainer BL, Matheson E, Wilkes RT. Diagnosis, treatment, and prevention of gout. Am Fam Physician. 2014;90(12):831-6.
Richette P, Doherty M, Pascual E, Barskova V, Becce F, Castaneda J, et al. 2018 updated European League Against Rheumatism evidence-based recommendations for the diagnosis of gout. Ann Rheum Dis. 2020;79(1):31-8.
Berger M, Yang Q, Maier A. X-ray Imaging. In: Maier A, Steidl S, Christlein V, Hornegger J, editors. Medical Imaging Systems: An Introductory Guide. Cham (CH): Springer Copyright 2018, The Author(s). 2018. p. 119-45.
Seibert JA. X-Ray Imaging Physics for Nuclear Medicine Technologists. Part 1: Basic Principles of X-Ray Production. Journal of Nuclear Medicine Technology. 2004;32(3):139-47.
Sudoł-Szopińska I, Afonso PD, Jacobson JA, Teh J. Imaging of gout: findings and pitfalls. A pictorial review. Acta Reumatol Port. 2020;45(1):20-5.
Rettenbacher T, Ennemoser S, Weirich H, Ulmer H, Hartig F, Klotz W, et al. Diagnostic imaging of gout: comparison of high-resolution US versus conventional X-ray. Eur Radiol. 2008;18(3):621-30.
Barthelemy CR, Nakayama DA, Carrera GF, Lightfoot RW, Jr., Wortmann RL. Gouty arthritis: a prospective radiographic evaluation of sixty patients. Skeletal Radiol. 1984;11(1):1-8.
Gentili A. The advanced imaging of gouty tophi. Curr Rheumatol Rep. 2006;8(3):231-5.
Dalbeth N, Doyle AJ, McQueen FM, Sundy J, Baraf HS. Exploratory study of radiographic change in patients with tophaceous gout treated with intensive urate-lowering therapy. Arthritis Care Res (Hoboken). 2014;66(1):82-5.
Perez-Ruiz F, Calabozo M, Pijoan JI, Herrero-Beites AM, Ruibal A. Effect of urate-lowering therapy on the velocity of size reduction of tophi in chronic gout. Arthritis Rheum. 2002;47(4):356-60.
Dalbeth N, Clark B, Gregory K, Gamble G, Sheehan T, Doyle A, et al. Mechanisms of bone erosion in gout: a quantitative analysis using plain radiography and computed tomography. Ann Rheum Dis. 2009;68(8):1290-5.
Pascual E, Sivera F. Time required for disappearance of urate crystals from synovial fluid after successful hypouricaemic treatment relates to the duration of gout. Ann Rheum Dis. 2007;66(8):1056-8.
Filippucci E, Riveros MG, Georgescu D, Salaffi F, Grassi W. Hyaline cartilage involvement in patients with gout and calcium pyrophosphate deposition disease. An ultrasound study. Osteoarthritis Cartilage. 2009;17(2):178-81.
Grassi W, Meenagh G, Pascual E, Filippucci E, editors. “Crystal clear”—sonographic assessment of gout and calcium pyrophosphate deposition disease. Seminars in arthritis and rheumatism; 2006: Elsevier.
Lai K-L, Chiu Y-M. Role of Ultrasonography in Diagnosing Gouty Arthritis. Journal of Medical Ultrasound. 2011;19(1):7-13.
Patil P, Dasgupta B. Role of diagnostic ultrasound in the assessment of musculoskeletal diseases. Ther Adv Musculoskelet Dis. 2012;4(5):341-55.
Puig JG, de Miguel E, Castillo MC, Rocha AL, Martínez MA, Torres RJ. Asymptomatic hyperuricemia: impact of ultrasonography. Nucleosides Nucleotides Nucleic Acids. 2008;27(6):592-5.
Pineda C, Amezcua-Guerra LM, Solano C, Rodriguez-Henríquez P, Hernández-Díaz C, Vargas A, et al. Joint and tendon subclinical involvement suggestive of gouty arthritis in asymptomatic hyperuricemia: an ultrasound controlled study. Arthritis research & therapy. 2011;13(1):1-7.
Howard RG, Pillinger MH, Gyftopoulos S, Thiele RG, Swearingen CJ, Samuels J. Reproducibility of musculoskeletal ultrasound for determining monosodium urate deposition: concordance between readers. Arthritis Care Res (Hoboken). 2011;63(10):1456-62.
De Miguel E, Puig JG, Castillo C, Peiteado D, Torres RJ, Martín-Mola E. Diagnosis of gout in patients with asymptomatic hyperuricaemia: a pilot ultrasound study. Ann Rheum Dis. 2012;71(1):157-8.
Peiteado D, De Miguel E, Villalba A, Ordóñez MC, Castillo C, Martín-Mola E. Value of a short four-joint ultrasound test for gout diagnosis: a pilot study. Clin Exp Rheumatol. 2012;30(6):830-7.
Davies J, Riede P, van Langevelde K, Teh J. Recent developments in advanced imaging in gout. Therapeutic Advances in Musculoskeletal Disease. 2019;11:1759720X19844429.
Teh J, McQueen F, Eshed I, Plagou A, Klauser A. Advanced Imaging in the Diagnosis of Gout and Other Crystal Arthropathies. Semin Musculoskelet Radiol. 2018;22(2):225-36.
Ogdie A, Taylor WJ, Neogi T, Fransen J, Jansen TL, Schumacher HR, et al. Performance of Ultrasound in the Diagnosis of Gout in a Multicenter Study: Comparison With Monosodium Urate Monohydrate Crystal Analysis as the Gold Standard. Arthritis Rheumatol. 2017;69(2):429-38.
Lee YH, Song GG. Diagnostic accuracy of ultrasound in patients with gout: A meta-analysis. Semin Arthritis Rheum. 2018;47(5):703-9.
Thiele RG. Role of ultrasound and other advanced imaging in the diagnosis and management of gout. Curr Rheumatol Rep. 2011;13(2):146-53.
Ebstein E, Forien M, Norkuviene E, Richette P, Mouterde G, Daien C, et al. Ultrasound evaluation in follow-up of urate-lowering therapy in gout: the USEFUL study. Rheumatology. 2018;58(3):410-7.
Mandl P, D’agostino M, Navarro-Compán V, Gessl I, Sakellariou G, Abhishek A, et al. OP0008 EULAR RECOMMENDATIONS FOR THE USE OF IMAGING IN THE DIAGNOSIS AND MANAGEMENT OF CRYSTAL-INDUCED ARTHROPATHIES IN CLINICAL PRACTICE. Annals of the Rheumatic Diseases. 2023;82:6-7.
Ebstein E, Forien M, Norkuviene E, Richette P, Mouterde G, Daien C, et al. UltraSound evaluation in follow-up of urate-lowering therapy in gout phase 2 (USEFUL-2): Duration of flare prophylaxis. Joint Bone Spine. 2020;87(6):647-51.
Jayakumar D, Sehra ST, Anand S, Stallings GW, Danve A. Role of Dual Energy Computed Tomography Imaging in the Diagnosis of Gout. Cureus. 2017;9(1):e985.
Glazebrook KN, Guimarães LS, Murthy NS, Black DF, Bongartz T, Manek NJ, et al. Identification of intraarticular and periarticular uric acid crystals with dual-energy CT: initial evaluation. Radiology. 2011;261(2):516-24.
Hu H-J, Liao M-Y, Xu L-Y. Clinical utility of dual-energy CT for gout diagnosis. Clinical Imaging. 2015;39(5):880-5.
Coupal TM, Mallinson PI, Gershony SL, McLaughlin PD, Munk PL, Nicolaou S, et al. Getting the Most From Your Dual-Energy Scanner: Recognizing, Reducing, and Eliminating Artifacts. AJR Am J Roentgenol. 2016;206(1):119-28.
Desai MA, Peterson JJ, Garner HW, Kransdorf MJ. Clinical utility of dual-energy CT for evaluation of tophaceous gout. Radiographics. 2011;31(5):1365-75; discussion 76-7.
Choi HK, Burns LC, Shojania K, Koenig N, Reid G, Abufayyah M, et al. Dual energy CT in gout: a prospective validation study. Ann Rheum Dis. 2012;71(9):1466-71.
Bongartz T, Glazebrook KN, Kavros SJ, Murthy NS, Merry SP, III WBF, et al. Dual-energy CT for the diagnosis of gout: an accuracy and diagnostic yield study. Annals of the Rheumatic Diseases. 2015;74(6):1072-7.
Ogdie A, Taylor WJ, Weatherall M, Fransen J, Jansen TL, Neogi T, et al. Imaging modalities for the classification of gout: systematic literature review and meta-analysis. Ann Rheum Dis. 2015;74(10):1868-74.
Wang P, Smith SE, Garg R, Lu F, Wohlfahrt A, Campos A, et al. Identification of monosodium urate crystal deposits in patients with asymptomatic hyperuricemia using dual-energy CT. RMD Open. 2018;4(1):e000593.
Dalbeth N, House ME, Aati O, Tan P, Franklin C, Horne A, et al. Urate crystal deposition in asymptomatic hyperuricaemia and symptomatic gout: a dual energy CT study. Ann Rheum Dis. 2015;74(5):908-11.
Jia E, Zhu J, Huang W, Chen X, Li J. Dual-energy computed tomography has limited diagnostic sensitivity for short-term gout. Clin Rheumatol. 2018;37(3):773-7.
Bayat S, Aati O, Rech J, Sapsford M, Cavallaro A, Lell M, et al. Development of a Dual-Energy Computed Tomography Scoring System for Measurement of Urate Deposition in Gout. Arthritis Care Res (Hoboken). 2016;68(6):769-75.
Johnson TR. Dual-energy CT: general principles. AJR Am J Roentgenol. 2012;199(5 Suppl):S3-8.
Chou H, Chin TY, Peh WC. Dual-energy CT in gout - A review of current concepts and applications. J Med Radiat Sci. 2017;64(1):41-51.
Paparo F, Zampogna G, Fabbro E, Parodi M, Andracco R, Ferrero G, et al. Imaging of tophi with an extremity-dedicated MRI system. Clin Exp Rheumatol. 2011;29(3):519-26.
Ryu K, Takeshita H, Takubo Y, Hirata M, Taniguchi D, Masuzawa N, et al. Characteristic appearance of large subcutaneous gouty tophi in magnetic resonance imaging. Modern Rheumatology. 2005;15(4):290-3.
Carter JD, Kedar RP, Anderson SR, Osorio AH, Albritton NL, Gnanashanmugam S, et al. An analysis of MRI and ultrasound imaging in patients with gout who have normal plain radiographs. Rheumatology (Oxford). 2009;48(11):1442-6.
POH YJ, DALBETH N, DOYLE A, McQUEEN FM. Magnetic Resonance Imaging Bone Edema Is Not a Major Feature of Gout Unless There Is Concomitant Osteomyelitis: 10-year Findings from a High-prevalence Population. The Journal of Rheumatology. 2011;38(11):2475-81.
Popp JD, Bidgood WD, Jr., Edwards NL. Magnetic resonance imaging of tophaceous gout in the hands and wrists. Semin Arthritis Rheum. 1996;25(4):282-9.
Schumacher HR, Jr., Becker MA, Edwards NL, Palmer WE, MacDonald PA, Palo W, et al. Magnetic resonance imaging in the quantitative assessment of gouty tophi. Int J Clin Pract. 2006;60(4):408-14.
Perez-Ruiz F, Dalbeth N, Urresola A, de Miguel E, Schlesinger N. Gout. Imaging of gout: findings and utility. Arthritis research & therapy. 2009;11(3):1-8.
Perez-Ruiz F, Naredo E. Imaging modalities and monitoring measures of gout. Curr Opin Rheumatol. 2007;19(2):128-33.
Gentili A. Advanced imaging of gout. Semin Musculoskelet Radiol. 2003;7(3):165-74.
Barnes CL, Helms CA. MRI of gout: a pictorial review. International Journal of Clinical Rheumatology. 2012;7(3):281.
Hoffer PB, Genant HK. Radionuclide joint imaging. Semin Nucl Med. 1976;6(1):121-37.
Pickhardt PJ, Shapiro B. Three-phase skeletal scintigraphy in gouty arthritis: an example of potential diagnostic pitfalls in radiopharmaceutical imaging of the extremities for infection. Clin Nucl Med. 1996;21(1):33-9.
Blumer SL, Scalcione LR, Ring BN, Johnson R, Motroni B, Katz DS, et al. Cutaneous and Subcutaneous Imaging on FDG-PET: Benign and Malignant Findings. Clinical Nuclear Medicine. 2009;34(10):675-83.
Palestro CJ, Vega A, Kim CK, Swyer AJ, Goldsmith SJ. Appearance of acute gouty arthritis on indium-111-labeled leukocyte scintigraphy. J Nucl Med. 1990;31(5):682-4.