Airborne outdoor environmental multidrug resistance bacteria: mini review on ecological source and health impact

ผู้แต่ง

  • Poomkhamol Chokphukhiao Triam Udom Suksa School, Bangkok
  • Chitthaya Muttoaut Learn Satit Pattana School, Bangkok, Thailand
  • Lalasa Koosongdham St Andrews International School Bangkok, Bangkok, Thailand
  • Sirinda Chalermthiralert International School Bangkok 39, Nonthaburi, Thailand
  • Tantakorn Jirajaroenpat Khon Kaen Wittayayon School, Khon Kaen
  • Manatsanan Waratanarat Samsenwittayalai School, Bangkok, Thailand
  • Chinunporn Emwareesrisakun Suksanari School, Bangkok, Thailand
  • Phoomiphat Thewasingh The Prince Royal’s College, Chiang Mai, Thailand
  • Sittichai singsu -

คำสำคัญ:

Multidrug-resistant, Environments, Antibiotic, Air outdoor

บทคัดย่อ

The emergence of multidrug-resistant (MDR) bacteria in outdoor environments present a growing threat to public health and ecosystems. This mini-review aims to explore the ecological sources and pathways of airborne MDR bacteria, emphasizing their prevalence in diverse outdoor environments such as urban areas, agricultural lands, and natural habitats. The review is based on a systematic literature review using electronic databases, where relevant studies were identified and analyzed for data on airborne MDR bacteria. The factors contributing to the dissemination of these bacteria, including human activities, animal interactions, and environmental changes, are discussed. Data was sourced from peer-reviewed journals, government reports, and environmental health studies. Health impacts, particularly the role of airborne MDR bacteria in respiratory infections and the potential for community-wide outbreaks, are focused on. The findings emphasize the need for enhanced monitoring, control measures, and global collaboration. By synthesizing current research, this review provides evidence-based recommendations to reduce the risks associated with airborne MDR bacteria and supports policy development.

References

Acosta-Martínez, V., Van Pelt, S., Moore-Kucera, J., Baddock, M.C., & Zobeck, T.M. (2015). Microbiology of wind-eroded sediments: Current knowledge and future research directions. Aeolian Research, 18, 99-113. https://doi.org/10.1016/j.aeolia.2015.06.002

Alegbeleye, O.O., & Sant’ Ana, A.S. (2020). Manure-borne pathogens as an important source of water contamination: An update on the dynamics of pathogen survival/transport as well as practical risk mitigation strategies. *International Journal of Hygiene and Environmental Health, 227*, 113524.

Alghamdi, B. A., Al-Johani, I., Al-Shamrani, J. M., Alshamrani, H. M., Al-Otaibi, B. G., Almazmomi, K., & Yusof, N. Y. (2023). Antimicrobial resistance in methicillin-resistant staphylococcus aureus. Saudi Journal of Biological Sciences, 30(4), 103604. https://doi.org/10.1016/j.sjbs.2023.103604

Ananna, F. H., Amin, M. G. M., Islam, D., & Ahmed, T. (2021). Groundwater contamination risks with manure-borne microorganisms under different land-application options. Water Science and Engineering, 14(4), 314-322. https://doi.org/10.1016/j.wse.2021.11.001

Aurilio, C., Sansone, P., Barbarisi, M., Pota, V., Giaccari, L. G., Coppolino, F., Barbarisi, A., Passavanti, M. B., & Pace, M. C. (2022). Mechanisms of action of carbapenem resistance. Antibiotics, 11(3), Article 421. https://doi.org/10.3390/antibiotics11030421

Bai, H., He, L.-Y., Wu, D.-L., Gao, F.-Z., Zhang, M., Zou, H.-Y., Yao, M.-S., & Ying, G.-G. (2022). Spread of airborne antibiotic resistance from animal farms to the environment: Dispersal pattern and exposure risk. Environment International, 158, Article 106927. https://doi.org/10.1016/j.envint.2021.106927

Bokhary, H., Pangesti, K. N. A., Rashid, H., Abd El Ghany, M., & Hill-Cawthorne, G. A. (2021). Travel-related antimicrobial resistance: A systematic review. Tropical Medicine and Infectious Disease, 6(1), Article 11. https://doi.org/10.3390/tropicalmed6010011

Browne, K., & Mitchell, B.G. (2023). Multimodal environmental cleaning strategies to prevent healthcare-associated infections. *Antimicrobial Resistance & Infection Control, 12*(1), 83.

Dawan, J., & Ahn, J. (2022). Bacterial Stress Responses as Potential Targets in Overcoming Antibiotic Resistance. *Microorganisms, 10*(7).

Dehari, D., Chaudhuri, A., & Kumar, D. N. (2023). Fiber and textile in drug delivery to combat multidrug resistance microbial infection. In Fiber and textile engineering in drug delivery systems (pp. 359-387). Elsevier. https://doi.org/10.1016/B978-0-323-96117-2.00006-6

Fernández-Martínez, N. F., Rivera-Izquierdo, M., Ortiz-González-Serna, R., Martínez-Ruiz, V., Lardelli-Claret, P., Aginagalde-Llorente, A. H., Valero-Ubierna, M. C., Vergara-Díaz, M. A., & Lorusso, N. (2023). Healthcare-associated infections by multidrug-resistant bacteria in Andalusia, Spain, 2014 to 2021. Euro Surveillance, 28(39), 2200805. https://doi.org/10.2807/1560-7917.ES.2023.28.39.2200805

Guarnieri, G., Olivieri, B., Senna, G., & Vianello, A. (2023). Relative humidity and its impact on the immune system and infections. International Journal of Molecular Sciences, 24(11), 9456. https://doi.org/10.3390/ijms24119456

Ha, D.R., Haste, N.M., & Gluckstein, D.P., (2019). The Role of Antibiotic Stewardship in Promoting Appropriate Antibiotic Use. *American Journal of Lifestyle Medicine, 13*(4), 376-383.

Hendriksen, R. S., Munk, P., Njage, P., van Bunnik, B., McNally, L., Lukjancenko, O., Röder., et al. (2019). Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nature Communications, 10, 1124. https://doi.org/10.1038/s41467-019-08853-3

Host Institution: Department of Food, (2018). Risk assessment of antimicrobial resistance along the food chain through culture-independent methodologies. *EFSA Journal, 16*(S1), e160811.

Husna, A., Rahman, M. M., Badruzzaman, A. T. M., Sikder, M. H., Islam, M. R., Rahman, M. T., Alam, J., & Ashour, H. M. (2023). Extended-spectrum β-lactamases (ESBL): Challenges and opportunities. Biomedicines, 11(11), 2937. https://doi.org/10.3390/biomedicines11112937

Ju, F., Beck, K., Yin, X., Maccagnan, A., McArdell, C. S., Singer, H. P., Johnson, D. R., Zhang, T., & Bürgmann, H. (2019). Wastewater treatment plant resistomes are shaped by bacterial composition, genetic exchange, and upregulated expression in the effluent microbiomes. ISME Journal.13(2):346-360.

Kariuki, S., Kering, K., Wairimu, C., Onsare, R., & Mbae, C. (2022). Antimicrobial resistance rates and surveillance in Sub-Saharan Africa: Where are we now? Infectious Diseases and Therapy, 15, 3589-3609. https://doi.org/10.2147/IDR.S342753

Koutsoumanis, K, Allende, A., Álvarez-Ordóñez, A., Bolton, D., Bover-Cid, S., et al., (2021). Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain. *EFSA Journal, 19*(6), e06651.

Kumar, A., & Pal, D. (2018). Antibiotic resistance and wastewater: Correlation, impact, and critical human health challenges. *Journal of Environmental Chemical Engineering, 6(1), 52-58.

Kumar, N. R., Balraj, T. A., Kempegowda, S. N., & Prashant, A. (2024). Multidrug-resistant sepsis: A critical healthcare challenge. Antibiotics, 13(1), 46. https://doi.org/10.3390/antibiotics13010046

Kusi, J., Ojewole, C. O., Ojewole, A. E., & Nwi-Mozu, I. (2022). Antimicrobial resistance development pathways in surface waters and public health implications. Antibiotics, 11(6), Article 821. https://doi.org/10.3390/antibiotics11060821

Mancuso, G., Midiri, A., Gerace, E., & Biondo, C. (2021). Bacterial antibiotic resistance: The most critical pathogens. Pathogens, 10(10), 1310. https://doi.org/10.3390/pathogens10101310

Manyi-Loh, C., Mamphweli, S., Meyer, E., & Okoh, A. (2018). Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications. Molecules, 23(4), Article 795. https://doi.org/10.3390/molecules23040795

Mulchandani, R., Wang, Y., Gilbert, M., & Van Boeckel, T. P. (2023). Global trends in antimicrobial use in food-producing animals: 2020 to 2030. PLOS Global Public Health, 3(2), e0001305. https://doi.org/10.1371/journal.pgph.0001305

Muteeb, G., Rehman, M. T., Shahwan, M., & Aatif, M. (2023). Origin of antibiotics and antibiotics resistance, and their impacts on drug development: A narrative review. Pharmaceuticals (Basel), 16(11), 1615. https://doi.org/10.3390/ph16111615

Hiroshi Nikaido. (2009). Multidrug resistance in bacteria. Annual Review of Biochemistry, 78, 119-146. doi: 10.1146/annurev.biochem.78.082907.145923

Novović, K., & Jovčić, B. (2023). Colistin resistance in Acinetobacter baumannii: Molecular mechanisms and epidemiology. Antibiotics (Basel), 12(3), 516. https://doi.org/10.3390/antibiotics12030516

Okeke, I.N., & Edelman, R. (2001). Dissemination of Antibiotic-Resistant Bacteria across Geographic Borders. Clinical Infectious Diseases, 33(3), 364-369. https://doi.org/10.1086/321877

Pazda, M., Kumirska, J., Stepnowski, P., & Mulkiewicz, E. (2019). Antibiotic resistance genes identified in wastewater treatment plant systems: A review. Science of the Total Environment, 697, 134023. https://doi.org/10.1016/j.scitotenv.2019.134023

Prestinaci, F., Pezzotti, P., & Pantosti, A. (2015). Antimicrobial resistance: A global multifaceted phenomenon. Pathogens and Global Health, 109(7), 309–318. https://doi.org/10.1179/2047773215Y.0000000030

Qiu, Y., Zhou, Y., Chang, Y., Liang, X., Zhang, H., Lin, X., Qing, K., Zhou, X., & Luo, Z. (2022). The effects of ventilation, humidity, and temperature on bacterial growth and bacterial genera distribution. International Journal of Environmental Research and Public Health, 19(22), 15345. https://doi.org/10.3390/ijerph192215345

Ruiz-Gil, T., Acuña, J. J., Fujiyoshi, S., Tanaka, D., Noda, J., Maruyama, F., & Jorquera, M. A. (2020). Airborne bacterial communities of outdoor environments and their associated influencing factors. Environment International, 145, 106156. https://doi.org/10.1016/j.envint.2020.106156

Ryall, B., Eydallin, G. & Ferenci, T. (2012). Culture history and population heterogeneity as determinants of bacterial adaptation: the adaptomics of a single environmental transition. Microbiology and Molecular Biology Reviews, 76(3), 597-625. doi: 10.1128/MMBR.05028-11

Salam, M. A., Al-Amin, M. Y., Salam, M. T., Pawar, J. S., Akhter, N., Rabaan, A. A., & Alqumber, M. A. A. (2023). Antimicrobial resistance: A growing serious threat for global public health. Healthcare (Basel), 11(13), 1946. https://doi.org/10.3390/healthcare11131946

Sambaza, S.S. & Naicker, N. (2023). Contribution of wastewater to antimicrobial resistance: A review article. Journal of Global Antimicrobial Resistance, 34, 23-29. https://doi.org/10.1016/j.jgar.2023.05.010

Samrot, A. V., Wilson, S., Preeth, R. S., Pandurangan, P., Sathiyasree, M., Saigeetha, S., Nagarajan, S., Pachiyappan, S., & Rajesh, V. V. (2023). Sources of antibiotic contamination in wastewater and approaches to their removal—An overview. Sustainability, 15(16), 12639. https://doi.org/10.3390/su151612639

Szabó, S., Feier, B., Capatina, D., Tertis, M., Cristea, C., & Popa, A. (2022). An overview of healthcare-associated infections and their detection methods caused by pathogen bacteria in Romania and Europe. Journal of Clinical Medicine, 11(11), 3204. https://doi.org/10.3390/jcm11113204

Tao, G., Feng, J., Feng, H., Feng, H., & Zhang, K. (2022). Reducing construction dust pollution by planning construction site layout. Buildings, 12(531). https://doi.org/10.3390/buildings12050531

Vassallo, A., Kett, S., Purchase, D., & Marvasi, M. (2022). The bacterial urban resistome: Recent advances. Antibiotics (Basel), 11(4), 512. https://doi.org/10.3390/antibiotics11040512

Vidovic, N., & Vidovic, S., (2020). Antimicrobial Resistance and Food Animals: Influence of Livestock Environment on the Emergence and Dissemination of Antimicrobial Resistance. Antibiotics, 9, DOI: 10.3390/antibiotics9020052.

Zhang, Z., Zhang, Q., Wang, T., Xu, N., Lu, T., Hong, W., Penuelas, J., Gillings, M., Wang, M., Gao, W., & Qian, H. (2022). Assessment of global health risk of antibiotic resistance genes. Nature Communications, 13(1), 1553. https://doi.org/10.1038/s41467-022-29283-8

Zhao, Y., Aarnink, A. J. A., De Jong, M. C. M., & Groot Koerkamp, P. W. G. (2014). Airborne microorganisms from livestock production systems and their relation to dust. Critical Reviews in Environmental Science and Technology, 44(10), 1071–1128. https://doi.org/10.1080/10643389.2012.746064

Zielin'ski, W., Korzeniewska, E., Harnisz, M., Drzymała, J., Felis, E., & Bajkacz, S. (2021). Wastewater treatment plants as a reservoir of integrase and antibiotic resistance genes – An epidemiological threat to workers and the environment. Environment International, 156, 106641. https://doi.org/10.1016/j.envint.2021.106641

Downloads

เผยแพร่แล้ว

17-03-2025

How to Cite

Chokphukhiao, P. ., Muttoaut, C., Koosongdham, L. ., Chalermthiralert, S. ., Jirajaroenpat , T. ., Waratanarat, M. ., Emwareesrisakun , C. ., Thewasingh , P. ., & singsu, S. (2025). Airborne outdoor environmental multidrug resistance bacteria: mini review on ecological source and health impact. วารสารนวัตกรรมสุขภาพและความปลอดภัย, 2(1), E–1641. สืบค้น จาก https://he04.tci-thaijo.org/index.php/JHIS/article/view/1641